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Jean-Pierre Serre was born in 1926 in France. He studied mathematics at the 
Ecole Normale Superieure. In 1954, at the age of 28, he was awarded a Fields Medal 
by the International Mathematical Union, the highest recognition for achievement in 
mathematics. Two years later he was appointed Professor of Algebra and Geometry 
at the College de France, where for about 15 years he was the youngest professor. 
He visited the Department of Mathematics, National University of Singapore, from 
2 to 15 February 1985. His visit was sponsored by the French-Singapore Academic 
Exchange Programme. While in Singapore, Professor Serre delivered two lectures on 
algebraic curves over finite fields and one lecture on the Ramanujan function. He 
also gave a two-hour seminar talk on Faltings' proof of the Mordell conjecture, and 
a Colloquium lecture entitled "6. = b2 

- 4ac" on class numbers of imaginary 
quadratic fields. On February 14, 1985, he gave an interview in which he discussed 
various aspects of his mathematical career and his views of mathematics. What 
follows is a transcript of this interview, edited by C. T. Chong and Y. K. Leong, and 
revised by J-P. Serre. 

0: What made you take up mathematics as your career? 

A: I remember that I began to like mathematics when I was perhaps 7 or 8. In high 
school I used to do problems for more advanced classes. I was then in a boarding 
house in Nimes, staying with children older than I was, and they used to bully me. 
So to pacify them, I used to do their mathematics homework. It was as good a 
training as any. 

My mother was a pharmacist (as was my father), and she liked mathematics. 
When she was a pharmacy student, at. the University of Montpellier, she had taken 
a first-year course in calculus, just for fun, and passed the exam. And she had 
carefully kept her calculus books (by Fabry and Vogt, if I remember correctly). 
When I was 14 or 15, I used to look at these books, and study them. This is how I 
learned about derivatives, integrals, series and such (I did that in a purely formal 
manner - Euler's style so to speak: I did not like, and did not understand, epsilons 
and deltas.) At that time, I had no idea one could make a living by being a 
mathematician. It is only later I discovered one could get paid for doing 
mathematics! What I thought at first was that I would become a high school teacher: 

11 



this looked natural to me. Then, when I was 19, I took the competition to enter the 
" Ecole Normale Superieure, and I succeeded. Once I was at "I 'Ecole", it became 
clear that it was not a high school teacher I wanted to be, but a research 
mathematician. 

0: Did other subjects ever interest you, subjects like physics or chemistry? 

A: Physics not much, but chemistry yes. As I said, my parents were pharmacists, 
so they had plenty of chemical products and test-tubes. I played with them a lot 
when I was about 15 or 16 besides doing mathematics. And I read my father's 
chemistry books (I still have one of them, a fascinating one, "Les Colloides" by 
Jacques Duclaux.) However, when I learned more chemistry, I got disappointed by 
its almost mathematical aspect: there are long series of organic compounds like CH 4 , 

C2 H6 , etc, all looking more or less the same. I thought, if you have to have series, 
you might as well do mathematics! So, I quit chemistry - but not entirely: I ended 
up marrying a chemist. 

0: Were you influenced by any school teacher in doing mathematics? 

A: I had only one very good teacher. This was in my last year in high school 
(1943-1944), in Nimes. He was nicknamed "Le Barbu": beards were rare at the 
time. He was very clear, and strict; he demanded that every formula and proof be 
written neatly. And he gave me a thorough training for the mathematics national 
competition called "Concours General", where I eventually got first prize. 

Speaking of Concours General, I also tried my hand at the one in physics, the 
same year (1944). The problem we were asked to solve was based entirely on some 
physical law I was supposed to know, but did not. Fortunately, only one formula 
seemed to me possible for that law. I assumed it was correct, and managed to do the 
whole 6-hour problem on that basis. I even thought I would get a prize. 
Unfortunately, my formula was wrong, and I got nothing- as I deserved! 

0: How important is inspiration in the discovery of theorems? 

A: I don't know what "inspiration" really means. Theorems, and theories, come up 
in funny ways. Sometimes, you are just not satisfied with existing proofs, and you 
look for better ones, which can be applied in different situations. A typical example 
for me was when I worked on the Riemann-Roch theorem (circa 1953), which I 
viewed as an "Euler-Poincare" formula (I did not know then that Kodaira-Spencer 
had had the same idea.) My first objective was to prove it for algebraic curves - a 
case which was known for about a century! But I wanted a proof in a special style; 
and when I managed to find it, I remember it did not take me more than a minute 
or two to go from there to the 2-dimensional case (which had just been done by 
Kodaira). Six months later, the full result was established by Hirzebruch, and 
published in his well-known Habilitationsschrift. 

Quite often, you don't really try to solve a specific question by a head-on attack. 
Rather you have some ideas in mind, which you feel should be useful, but you don't 

12 



know exactly for what they are useful. So, you look around, and try to apply them. 
It's like having a bunch of keys, and trying them on several doors. 

Q: Have you ever had the experience where you found a problem to be impossible 
to solve, and then after putting it aside for some time, an idea suddenly occured 
leading to the solution? 

A: Yes, of course this happens quite often. For instance, when I was working on 
homotopy groups ('\.!1950), I convinced myself that, for a given space X, there should 
exist a fibre space E, with base X, which is contractible; such a space would indeed 
allow me (using Leray's methods) to do lots of computations on homotopy groups 
and Eilenberg-Maclane cohomology. But how to find it? It took me several weeks 
(a very long time, at the age I was then ... )to realize that the space of "paths" on X 
had all the necessary properties - if only I dared call it a "fibre space", which I 
did. This was the starting point of the loop-space method in algebraic topology, 
many results followed quickly. 

Q: Do you usually work on only one problem at a time or several problems at the 
same time? 

A: Mostly one problem at a time, but not always. And I work often at night (in 
half-sleep), where the fact that you don't have to write anything down gives to the 
mind a much greater concentration, and makes changing topics easier. 

Q: In physics, there are a lot of discoveries which were made by accident, like X-rays, 
cosmic background radiation and so on. Did that happen to you in mathematics? 

A: A genuine accident is rare. But sometimes you get a surprise because some 
argument you made for one purpose happens to solve a question in a different 
direction; however, one can hardly call this an "accident". 

Q: What are the central prot>lems in algebraic geometry or number theory? 

A: I can't answer that. You see, some mathematicians have clear and far-ranging 
"programs". For instance, Grothendieck had such a program for algebraic geometry; 
now Langlands has one for representation theory, in relation to modular forms and 
arithmetic. I never had such a program, not even a small size one. I just work on 
things which happen to interest me at the moment. (Presently, the topic which 

amuses me most is counting points on algebraic curves over finite fields. It is a 
kind of applied mathematics: you try to use any tool in algebraic geometry and 
number theory that you know of ... and you don't quite succeed!) 

Q: What would you consider to be the greatest developments in algebraic geometry 
or number theory within the past five years? 

A: This is easier to answer. Faltings' proof of the Mordell conjecture, and of the 
Tate conjecture, is the first thing which comes to mind. I would also mention Gross
Zagier's work on the class number problem for quadratic fields (based on a previous 
theorem of Goldfeld), and Mazur-Wiles theorem on lwasawa's theory, using modular 
curves. (The applications of modular curves and modular functions to number 
theory are especially exciting: you use GL2 to study GL 1 , so to speak! There is 
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clearly a lot more to come from that direction ... may be even a proof of the 
Riemann Hypothesis some day!) 

0: Some scientists have done fundamental work in one field and then quickly 
moved on to another field. You worked for three years in topology, then took up 
something else. How did this happen? 

A: It was a continuous path, not a discrete change. In 1952, after my thesis on 
homotopy groups, I went to Princeton, where I lectured on it (and on its 
continuation: "C-theory"), and attended the celebrated Artin-Tate .seminar on 
class field theory. 

Then, I returned to Paris, where the Cartan seminar was discussing functions of 
several complex variables, and Stein manifolds. It turned out that the recent results 
of Cartan-Oka could be expressed much more efficiently (and proved in a simpler 
way) using cohomology and sheaves. This was quite exciting, and I worked for a 
short while on that topic, making applications of Cartan theory to Stein manifolds. 
However, a very interesting part of several complex variables is the study of projective 
varieties (as opposed to affine ones - which are somewhat pathological for a 
geometer); so, I began working on these complex projective varieties, using sheaves: 
that's how I came to the circle of ideas around Riemann-Roch, in 1953. But 
projective varieties are algebraic (Chow's theorem), and it is a bit unnatural to study 
'these algebraic objects using analytic functions, which may well have lots of essential 
singularities. Clearly, rational functions should be enough - and indeed they are. 
This made me go (around 1954) into "abstract" algebraic geometry, over any 
algebraically closed field. But why assume the field is algebraically closed? Finite 
fields are more exciting, with Weil conjectures and such. And from there to number 
fields it is a natural enough transition ... This is more or less the path I followed. 

Another direction of work came from my collaboration (and friendship) with 
Armand Borel. He told me about Lie groups, which he knows like nobody else. The 
connections of these groups with topology, algebraic geometry, number theory, ... 
are fascinating. Let me give you just one such example (of which I became aware 
about 1968): 

Consider the most obvious discrete subgroup of SL2 (R), namely r= SL2 (Z). One 
can compute its "Euler-Poincare characteristic" X (I'), which turns out to be -1/12 
(it is not an integer: this is because fhas torsion). Now -1/12 happens .to be the 
valuel;(-1) of Riemann's zeta-function at the points= -1 (a result known already 
to Euler). And this is not a coincidence! It extends to any totally real number field 
K, and can be used to study the denominator of l; k (-1 ). (Better results can be 
obtained by using modular forms, as was found later.) Such questions are not group 
theory, nor topology, nor number theory: they are just mathematics. 

0: What are the prospects of achieving some unification of the diverse fields of 
mathematics? 
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A: I would say that this has been achieved already. I have given above a typical 
example where Lie groups, number theory, etc, come together, and cannot be 
separated from each other. Let me give you another such example (it would be 
easy to add many more): 

There is a beautiful theorem proved recently by S. Donaldson on four
dimensional compact differentiable manifolds. It states that the quadratic form 
(on H2 ) of such a manifold is severely restricted; if it is positive definite, it is a sum 
of squares. And the crux of the proof is to construct some auxiliary manifold (a 
"cobordism") as the set of solutions of some partial differential equation (non linear, 
of course)! This is a completely new application of analysis to differential topology. 
And what makes it even more remarkable is that, if the differentiability assumption 
is dropped, the situation becomes quite different: by a theorem of M. Freedman, 
the H2 -quadratic form can then be almost anything. 

0: How does one keep up with the explosion in mathematical knowledge? 

A: You don't really have to keep up. When you are interested in a specific question, 
you find that very little of what is being done has any relevance to you; and if 
something does have relevance, then you learn it much faster, since you have an 
application in mind. It is also a good habit to look regularly at Math. Reviews 
(especially the collected volumes on number theory, group theory, etc). And you 
learn a lot from your friends, too: it is easier to have a proof explained to you at 
the blackboard, than to read it. 

A more serious problem is the one on the "big theorems" which are both very 
useful and too long to check (unless you spend on them a sizable part of your 
lifetime ... ). A typical example is the Feit-Thompson Theorem: groups of odd 
order are solvable. (Chevalley once tried to take this as the topic of a seminar, with 
the idea of giving a complete account of the proof. After two years, he had to give 
up.) What should one do with such theorems, if one has to use them? Accept them 
on faith? Probably. But it is not a very comfortable situation. 

I am also uneasy with some topics, mainly in differential topology, where the 
author draws a complicated picture (in 2 dimensions), and asks you to accept it as 
a proof of something taking place in 5 dimensions or more. Only the experts can 
"see" whether such a proof is correct or not - if you can call this a proof. 

0: What do you think will be the impact of computers on the development of 
mathematics? 

A: Computers have already done a lot of good in some parts of mathematics. In 
number theory, for instance, they are used in a variety of ways. First, of course, 
to suggest conjectures, or questions. But also to check general theorems on 
numerical examples -which helps a lot with finding possible mistakes. 

They are also very useful when there is a large search to be made (for instance, 
if you have to check 106 or 107 cases). A notorious example is the proof of the 

15 



Four-Colour Theorem. There is however a problem there, somewhat similar to the 
one with Feit-Thompson: such a proof cannot be checked by hand; you need a 
computer (and a very subtle program). This is not very comfortable either. 

0: How could we encourage young people to take up mathematics, especially in 
the schools? 

A: I have a theory on this, which is that one should first discourage people from 
doing mathematics; there is no need for too many mathematicians. But, if after 
that, they still insist on doing mathematics, then one should indeed encourage them, 
and help them. 

As for high school students, the main point is to make them understand that 
mathematics exists, that it is not dead (they have a tendency to believe that only 
physics, or biology, has open questions). The defect in the traditional way of 

teaching mathematics is that the teacher never mentions these questions. It is a 
pity. There are many such, for instance in number theory, that teenagers could very 
well understand: Fermat of course, but also Goldbach, and the existence of 
infinitely many primes of the form n2 +1. And one should also feel free to state 
theorems without proving them (for instance Dirichlet's theorem on primes in 
arithmetic progressions). 

0: Would you say that the development of mathematics in the past thirty years 
was faster than that in the previous thirty years? 

A: I am not sure this is true. The style is different. In the 50's and 60's, the emphasis 
was quite often on general methods: distributions, cohomology and the like. These 
methods were very sucessful, but nowadays people work on more specific questions 
(often, some quite old ones: for instance the classification of algebraic curves in 
3-dimensional projective space!). They apply the tools which were made before; 
this is quite nice. (And they also make new tools: microlocal analysis, supervarieties, 
intersection cohomology ... ). 

0: In view of this explosion of mathematics, do you think that a beginning graduate 
student could absorb this large amount of mathematics in four, five, or six years 
and begin original work immediately after that? 

A: Why not? For a given problem, you don't need to know that much, usually -
and, besides, very simple ideas will often work. 

Some theories get simplified. Some just drop out of sight. For instance, in 1949, 
I remember I was depressed because every issue of the Annals of Mathematics would 
contain another paper on topology which was more difficult to understand than the 
previous ones. But nobody looks at these papers any more; they are forgotten (and 
deservedly so: I don't think they contained anything deep .... ). Forgetting is a very 
healthy activity. 
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Still, it is true that some topics need much more training than some others, 
because of the heavy technique which is used. Algebraic geometry is such a case; 
and also representation theory. 

Anyway, it is not obvious that one should say "I am going to work in algebraic 
geometry", or anything like that. For some people, it is better to just follow 
seminars, read things, and ask questions to oneself; and then learn the amount of 
theory which is needed for these questions. 

0: In other words, one should aim at a problem first and then learn whatever tools 
that are necessary for the problem. 

A: Something like that. But since I know I cannot give good advice to myself, I 
should not give advice to others. I don't have a ready-made technique for working. 

0: You mentioned papers which have been forgotten. What percentage of the papers 
published do you think will survive? 

A; A non-zero percentage, I believe. After all, we still read with pleasure papers 
by Hurwitz, or Eisenstein, or even Gauss. 

0: Do you think that you will ever be interested in the history of mathematics? 

A: I am already interested. But it is not easy; I do not have the linguistic ability in 
Latin or Greek, for instance. And I can see that it takes more time to write a paper 
on the history of mathematics than in mathematics itself. Still, history is very 
interesting; it puts things in the proper perspective. 

0: Do you believe in the classification of finite simple groups? 

A: More or less - and rather more than less. I would be amused if a new sporadic 
group were discovered, but I am afraid this will not happen. 

More seriously, this classification theorem is a splendid thing. One may now 
check many properties by just going through the list of all groups (typical example: 
the classification of n-transitive groups, for n ~ 4). 

0: What do you think of life after the classification of finite simple groups? 

A: You are alluding to the fact that some finite group theorists were demoralized 
by the classification; they said (or so I was told) "there will be nothing more to do 
after that". I find this ridiculous. Of course there would be plenty to do! First, of 
course, simplifying the proof (that's what Gorenstein calls "revisionism"). But also 
finding applications to other parts of mathematics; for instance, there have been 
very curious discoveries relating the Griess- Fischer monster group to modular forms 
(the so-called "Moonshine"). 

It is just like asking whether Faltings' proof of the Mordell conjecture killed the 
theory of rational points on curves. No! It is merely a starting point. Many questions 
remain open. 
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(Still, it is true that sometimes a theory can be killed. A well-known example is 
Hilbert's fifth problem: to prove that every locally euclidean topological group is 
a Lie group. When I was a young topologist, that was the problem I really wanted to 
solve - but I could get nowhere. It was Gleason, and Montgomery-Zippin, who 
solved it, and their solution all but killed the problem. What else is there to find in 
this direction? I can only think of one question: can the group of p-adic integers 
act effectively on a manifold? This seems quite hard- but a solution would have no 
application whatsoever, as far as I can see.) 

Q: But one would assume that most problems in mathematics are like these, namely 
that the problems themselves may be difficult and challenging, but after their 
solution they become useless. In fact there are very few problems like the Riemann 
Hypothesis where even before its solution, people already know many of its 
consequences. 

A: Yes, the Riemann Hypothesis is a very nice case: it implies lots of things 
(including purely numerical inequalities, for instance on discriminants of number 
fields). But there are other such examples: Hironaka's desingularization theorem 
is one; and of course also the classification of finite simple groups we discussed 
before. 

Sometimes, it is the method used in the proof which has lots of applications: 
am confident this will happen with Faltings. And sometimes, it is true, the 

problems are not meant to have applications; they are a kind of test on the existing 
theories; they force us to look further. 

Q: Do you still go back to problems in topology? 

A: No. I have not kept track of the recent techniques, and I don't know the latest 
computations of the homotopy groups of spheres 1T n + k (Sn) (I guess people have 
reached up to k = 40 or 50. I used to know them up to k = 10 or so.) 

But I still use ideas from topology in a broad sense, such as cohomology, 
obstructions, Stiefei-Whitney classes, etc. 

Q: What has been the influence of Bourbaki on mathematics? 

A: A very good one. I know it is fashionable to blame Bourbaki for everything 
("New Math" for instance), but this is unfair. Bourbaki is not responsible. People 
just misused his books; they were never meant for university teaching, even less 
high school teaching. 

Q: Maybe a warning sign should have been given? 

A: Such a sign was indeed given by Bourbaki: it is the Semina ire Bourbaki. The 
seminaire is not at all formal like the books; it includes all sorts of mathematics, 
and even some physics. If you combine the seminaire and the books, you get a much 
more balanced view. 

Q: Do you see a decreasing influence of Bourbaki on mathematics? 

18 



A: The influence is different from what it was. Forty years ago, Bourbaki had a 
point to make; he had to prove that an organized and systematic account of 
mathematics was possible. Now the point is made and Bourbaki has won. As a 
consequence, his books now have only technical interest; the question is just 
whether they give a good exposition of the topic they are on. Sometimes they do 
(the one on "root systems" has become standard reference in the field); sometimes 
they don't (I won't give an example: it is too much a matter of taste). 

0: Speaking of taste, can you say what kind of style (for books, or papers), you like 
most? 

A: Precision combined with informality! That is the ideal, just as it is for lectures. 
You find this happy blend in authors like Atiyah or Milnor, and a few others. But 
it is hard to achieve. For instance, I find many of the French (myself included) a 
bit too formal, and some of the Russians a bit too imprecise ..... . 

A further point I want to make is that papers should include more side remarks, 
open questions, and such. Very often, these are more interesting than the theorems 
actually proved. Alas, most people are afraid to admit that they don't know the 
answer to some question, and as a consequence they refrain from mentioning the 
question, even if it is a very natural one. What a pity! As for myself, I enjoy saying 
"I do not know". 
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